Геологический факультет МГУ имени М.В. Ломоносова Научно-образовательный центр Геологического факультета

«Современное состояние наук о Земле»

Материалы международной конференции, посвящённой памяти

Виктора Ефимовича Хаина

Москва, 1-4 февраля 2011 г.

Издательство Геологический факультет Московского Государственного Университета имени М.В.Ломоносова 2011 г. С28 Современное состояние наук о Земле. Материалы международной конференции, посвящённой памяти Виктора Ефимовича Хаина, г.Москва, 1-4 февраля 2011 г. — М.: Изд-во Геологический факультет Московского Государственного Университета имени М.В.Ломоносова, 2011. — 2297 с.

ISBN 978-5-9902631-1-6

Тезисы докладов представлены в авторской редакции. Организационный комитет не во всех случаях разделяет представления и идеи авторов, излагаемые в публикуемых тезисах.

Конференция организована при финансовой поддержке Российского Фонда Фундаментальных Исследований (проект 11-05-06004-г)

Сборник материалов конференции включает доклады специалистов в различных областях наук о Земле из академических, учебных и производственных организаций России, представленные на международной конференции, посвящённой памяти Виктора Ефимовича Хаина, проходившей 1-4 февраля 2011 года на Геологическом факультете МГУ имени М.В.Ломоносова, г.Москва. Большинство статей посвящено решению не только специальных проблем геологии, но также имеет общенаучное – прикладное и методологическое значение.

Сборник будет полезен широкому кругу студентов, аспирантов и научных работников геологических и смежных специальностей.

УДК 55 ББК 26

ГЛАВНЫЕ ЧЕРТЫ КРУПНОЙ ПОЗДНЕМЕЗОЗОЙСКОЙ ХАБАРОВСКОЙ АСТРОБЛЕМЫ («ДЕРСУ»)

Сушкин Л.Б.

Русское Географическое Общество, Хабаровское отделение, Хабаровск (sushkinl@rambler.ru)

Выявленные за последние десятилетия многочисленные ударно - астероидные и метеоритные (импактные) структуры в разных районах мира, в т. ч. Урала и Сибири [3, 4, 5, 7,18] позволяют по-новому рассмотреть и ряд морфоструктур Дальнего Востока России.

По оценкам специалистов, исходя из плотности астроблем в хорошо изученных районах мира [3, 4, 15, 18], резерв неоткрытых объектов такого рода в России исчисляется сотнями. Это наиболее всего актуально для Дальнего Востока, обширной территории которого установлены на сегодня лишь единичные небольшие импактные кратеры: Эльгыгытгын (18 км), Соболевская и Сихотэ-Алиньская группы воронок. Более значительным размером выделяются древний кратер Кограм (50 км) в юговосточной Якутии, и среднемезозойский кратер Лабынкыр (30 / 60 км) -в Северном Приохотье [4, 14].

Такое положение в значительной мере обусловлено сложностью геологического строения и активной геодинамикой большей части региона, приводящей к быстрой в геологическом смысле эрозии следов космических ударов на поверхности Земли. Наряду с этими природными факторами и слабой населённостью территории Дальнего Востока, очевидно и отсутствие в регионе целенаправленных исследований космогенных структур.

Вместе с тем, имеющиеся данные свидетельствуют о присутствии в регионе гораздо более крупной космогенной структуры, предположительно, позднемезозойского возраста.

Анализ широкого комплекса данных указывает на вероятную космогенную природу одной из наиболее ярких и масштабных структур Дальневосточного Хабаровской региона кольцевой морфоструктуры (астроблемы ?) [11,12, 13,14] - диаметром 100 / 280 км. Её центральная часть отчётливо выражена в современном рельефе симметричными друг другу дугообразными хребтами Хехцир и Вандан, видимо, составлявшими некогда единый кольцевой хребет. Эродированный юго - западный сегмент центрального кольца расположен на территории КНР, в районе города Фуюань, где представлен в излучине рр. Амура и Уссури низкогорным массивом г. Илигашань (Рис. 1). Наряду с центральным кольцом диаметром 100 км в современном рельефе и гидросети отчётливо видны сегменты более масштабного внешнего кольцевого водораздела 280 проходящего диаметром KM, правобережью верховья р. Хор, в т. ч. горному массиву Тигровый Дом, сопкам останцам Матай на юге, и Халхадьян на севере. Вероятно, эта крупная кольцевая морфоструктура имеет гораздо более концентрическое сложное телескопированное) внутреннее строение.

Космогенный характер Хабаровской структуры (астроблемы) подтверждается развитием в ней хаотических геологических комплексов, разнообразных импактных брекчий (в т. ч. брекчий «грис») [3, 4, 5, 14, 15 1. признаками ударного метаморфизма, а также находками в её пределах метеоритного железа [11,12,16], сфероллоидов никелистого железа R осадочных породах обрамления eë (серия 11, цагаянская 12, 13 ней контрастной совпадающей c гидрохимической аномалией железа, интенсивным эманированием радона, дефицитом легкоподвижных элементов (иода и селена) и др. Закономерно также расположение вокруг неё в обогащённых углеродом и железом отложениях идентичного возраста массовых захоронений останков динозавров с признаками катастрофического события, в том числе - с беспрецедентно высоким

содержанием иридия: Благовещенское, Лунь-Гу-Шань (Белые Кручи), Асташихинское, Гильчинское, Кундурское, Западно - Сахалинское (Синегорское), Китадани и Оюбари (Япония) [1, 2, 11, 12, 13, 14] (Рис. 3).

Рис 1. Вид центральной части Хабаровской астроблемы. Космоснимок NASA LANDSAT, 17августа 1977 г. На юге видна тёмная дуга горной тайги хребта Хехцир, на севере -дуга хребта Вандан. В 1 см. -10 км.

Благодаря своей контрастности Хабаровская КМС прекрасно дешифрируется на многих топографических и аэрокосмофотоматериалах. (Рис. 1).

Координаты центра астроблемы 48° 40' с. ш, 135° в. д. (Рис. 2). Ёё центральный ударновзрывной кратер имеет форму субмеридионального овала размером 100 x 90 км, при современной его глубине до 950 м.

Предполагаемый - по совокупности геологических данных (в т. ч., по возрасту заполняющего комплекса)

позднемезозойский возраст Хабаровской космогенной структуры (астроблемы Дерсу), очень близок к катастрофическому рубежу мела и палеогена, с которым связано глобальное вымирание организмов на Земле, в том числе вымирание динозавров по всему миру. Вопрос возраста требует более глубокого изучения.

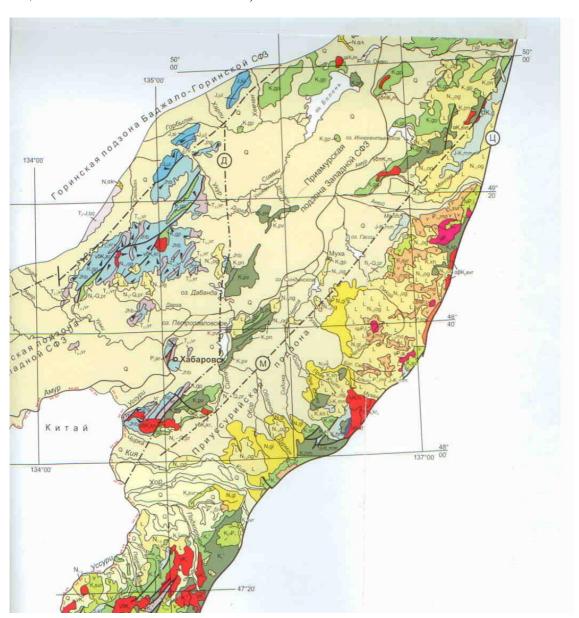


Рис 2. Схематизированная геологическая карта района Хабаровской астроблемы [По ГГК.., 2008, 6, 10]

Обращает на себя внимание присутствие в ряде костеносных горизонтов

цагаянской серии глинистых пород неясной природы с аномальным изумрудно -

зелёным цветом. По своему облику эти глины имеют много общего с бирюзово - зелёными глинами, установленными Уолтером Альваресом в пограничных мел -

палеогеновых разрезах, где их аномальная окраска была обусловлена высокими концентрациями соединений иридия [17].

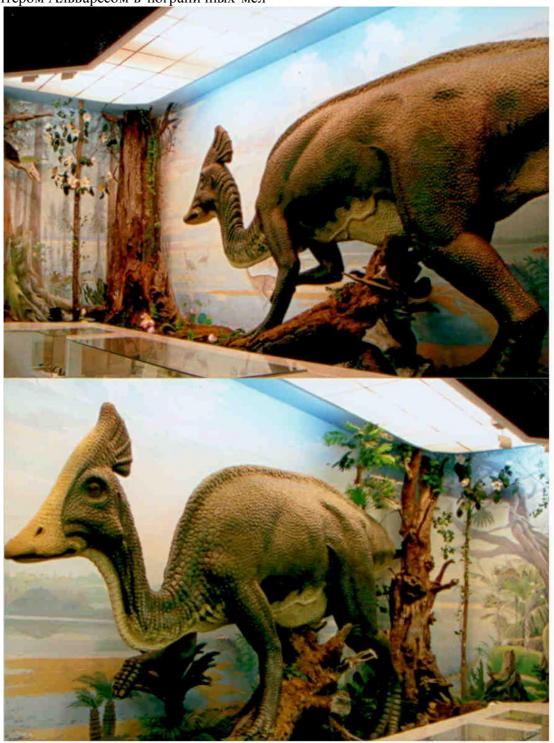


Рис.3 Приамурский гадроозавр Olorotitan Arharensis. Экспозиция Музея Амура, г. Хабаровск

Представленная В дальневосточных захоронениях фауна позднемезозойских динозавров имеет очень много общего с изученными видами, летально захоронениях на территории США и Канады [20], наиболее ярким из которых является Arharensis – самый крупный Olorotitan обнаруженный гадрозавр, ныне пределами Северной Америки (Рис.3).

Считающийся ныне одним из крупнейших в мире, и « главным убийцей динозавров » астероидный кратер Чикскулюб на Юкатане - практически недоступен для визуального наблюдения, так как находится на большой глубине, выявлен лишь геофизическими и буровыми исследованиями и значительная его часть скрыта водами Мексиканского залива.

В отличие от астроблемы Чикскулюб, - ничуть не уступающая ей по размерам и очень близкая по возрасту Хабаровская астроблема обладает очень выразительным, прекрасно отпрепарированным рельефом (современной глубиной ≈ 1 км !), и расположена в хорошо доступном районе на оживлённом международном перекрёстке. Как и в Северной Америке, - Хабаровская астроблема окружена по периферии с разных сторон (от реки Зеи на западе — до Сахалина и Японии на востоке) - целой серией « кладбищ динозавров » - в том числе несущих в себе явные признаки скоротечного катастрофического события.

Таким образом, масштаб Хабаровской структуры (Ø 280 - 300 км !?), даже при неполноте имеющихся предварительные данных, вместе с тем, вероятно, указывает на то, что в данном случае мы имеем дело с одной из крупнейших позднемезозойских космогенных структур (астроблем образование которой не могло не иметь не только региональных, но и глобальных (общепланетарных) астрогеологических и экологических последствий.

Учитывая колоссальное количество рассеянного в окружающем пространстве чужеродного космогенного вещества, (в

железа), установленный в основном пределах Хабаровской структуры аномальный уровень эманирования радиоактивного газа радона, а с другой дефицит стороны, -острый ряда легкоподвижных элементов, (в т. ч. йода, селена), важных очень ДЛЯ жизнедеятельности человека. - особого внимания требуют проведение глубоких исследований по влиянию этих аномалий на здоровье населения данного района, его охрана, разностороннего экологического мониторинга окружающей природной среды.

Положение в самом центре Хабаровской астроблемы не только крупного города (столицы ДВФО РФ) и научного центра, но Хехцирского биосферного заповедника природного заказника, уникальные создаёт возможности проведения здесь глубоких исследований по возможному воздействию негативных факторов крупных космогенных событий, (в т. ч. астероидных ударов) как на биосферу, так и на человеческое сообщество.

Приходится признать, что исследование Хабаровской астроблемы находится лишь на самом начальном этапе, но масштабы этой грандиозной структуры таковы, что потребуют, очевидно, многолетних усилий, в том числе силами международных научных коллективов.

Сверхдоступность Хабаровской космогенной струкутуры, возможно, - одной крупнейших на нашей планете, положение её на границе великих стран и оживлённом перекрёстке международного открывает новые широкие общения горизонты плодотворного ДЛЯ международного сотрудничества в области науки, образования и туризма.

Литература

- 1. Алифанов В.Р. Динозавры Сахалина и Японских островов // Природа, № 5, 2007, с. 29-30.
- 2. Болотский Ю.Л., Моисеенко В.Г. О динозаврах Приамурья. АмурКНИИ ДВО АН СССР, Благовещенск, 1988, 38 с.

- 3. Вишневский С.А. Астроблемы. Новосибирск: OOO « Нонпарель», 2007, 288 с.
- 4. Геология астроблем. Л. Недра, 1980, 231 с.
- 5. Гигантские астроблемы России. СПб. ВСЕГЕИ, 1994, 21 с.
- 6. Государственная геологическая карта РФ. 1: 1 000 000. Лист М -53 / Мин. природы РФ, ФГУП ВСЕГЕИ, ФГУП « Дальгеофизика », 2008 г.
- 7. Зейлик Б.С., Кузовков Г.Н. Проблема формирования платформенных депрессий, взрывных кольцевых структур и космическая защита Земли для сохранения жизни на планете // Отеч. геология, 2006, № 1, с. 78 82.
- 8. Масайтис В.Л., Мащак М.С., Райхлин А.И. и др. Алмазоносные импактиты Попигайской астроблемы. СПб.: ВСЕГЕИ, 1998. 178 с.
- 9. Нечаева И.А. Множественные метеоритные взрывы как геологический фактор. М.: Недра, 1982.
- 10. Среднеамурский осадочный бассейн: геологическое строение, геодинамика, топливно-энергетические ресурсы. Владивосток: ДВО РАН, 2009. 424 с.
- 11.Сушкин Л.Б. Хабаровская астроблема. Приамурское географическое общество, Хабаровск, 2004, 52 с.
- 12.Сушкин Л.Б. О космогенной природе Хабаровской кольцевой морфоструктуры //

- Наука и природа Дальнего Востока. Хабаровск, 2004, № 1, с. 92 – 105.
- 13. Сушкин Л.Б. О космогенных структурах Дальнего Востока России// Геологические опасности: XV Всеросс. Конфер. с межд. участием, Тез. докл. Архангельск, 2009.
- 14. Сушкин Л.Б. О природе некоторых крупных кольцевых морфоструктур Российского Приамурья// Современные проблемы регионального развития: III Междунар. Конфер, Тез. докл. Биробиджан, 2010. С. 85-86.
- 15.Фельдман В.И. Петрология импактитов. М: МГУ, 1990. 299 с.
- 16.Юдин И.А., Коломенский В.Д. Минералогия метеоритов. Свердловск, УНЦ АН СССР, 1987, 200 с.
- 17. Alvarez L.W., Alvarez W., Asaro F. And Michel H.V. (1980) Extraterrestrial cause for the Cretaceous / Tertiary extinction. Science, 208: P. 1095 1108.
- 18. Australian Impact Structures. AGSO Journal, 1996, vol.16. N 4. Canberra.
- 19. Shoemaker E, Chao E.C.T. New evidence for the impact origin of the Ries Basin. Bavaria, Germany// Journal of Geophisical Research. 1961. V. 71. P. 3371 3378.
- 20. The Sedimentary Record of Meteorite Impacts. Geological Society of America, Special. Paper 137, 2008, 213 p.